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Algorithms & The Order of the 
Stream

S. Guha
UPENN

joint work with A. McGregor

Data Stream Model

Adversary controls the order of the 
input.

Upper bound statements are very 
powerful
Few things have nice upper bounds –
response of boring to paranoia from 
non-theorists 

Random Order Model

Worst case over the distribution
Assumes that once the input is fixed, any 
permutation is equally likely.

Average case model 

Random order generalizes assumptions 
such as Zipf, Gaussian,  etc

Why 1. A Classic Model

Munro, Paterson `80
Exact Algorithms
O(n1/p) space using p passes
O(n1/(2p)) space for random order 
streams

Open Problem: O(log log n) passes 
using logO(1) n space. 

Why 2. Power of Adversary

Genie in the network hates you.
All packets are delivered at exactly 
the wrong point of time
Adversary rearranges after looking 
at the full input

Limited Adversaries …
Say for a network the sum of the 
queue sizes …

Why 3. Natural Model 

Random by
a) Definition: iid samples from a 

distribution. More on this later.

b) Semantics: (Firstname, Salary)

c) Design: Backup samples in disc.
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Why 4. Algorithm Development

Discrepancy Method
Assume random order
Develop algorithm 
Simulate random order

Meyerson ’01 (showed both)
used in Charikar, Panigrahy, O’callaghan ‘03)

Chang, Kannan ’06; Guha, McGregor ’07

Guha, McGregor, Venkatasubramanian ’06; Bhuvnagari, 
Ganguly ’06, Chakrabarti, Cormode, McGregor ’07.

Few Results

Demaine, Lopez-Oritz, Munro, 02

Takers?
Has to be a permutation invariant 
function.

3a) Brave New World

Assume you are trying to estimate 
some property of a distribution

Why did you want the median anyway?

You need a bunch of samples (VC 
Theory)
Do you need to store all? 

Space as Precision

Find the CDF=½ point.

ε-2 samples give § ε guarantee
Space S ) § n/S we get ½§ 1/S

Does not improve if n ! 1
Sad.

Looking Ahead

Consistent Estimation
Also Exchangeability and deFinetti

If space S gave § (pn) logO(1) n/S
As n ! 1 then § term ! 0

Adversarial Order Upper Bounds
Munro Paterson

n1/p space for p passes exact

Manku, Rajagopalan, Lindsay `98
ε-1 log2 n for § ε n

MRL 99, Greenwald & Khanna `01
ε-1 log n 

1/ε points define a coreset in 1D
With a log n loss …

Sampling ε-2 log n for § ε n

Consequence 
ε-1/p for § ε n in p passes
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Lower Bounds

Munro, Paterson ‘80: 
Deterministic algorithms storing pts, Ω(n1/p) space

Henzinger, Raghavan, Rajagopalan ‘96
§ ε n, Ω(1/ε) space
Communication Complexity
Multipass lower bound for other problems, not 
median

Guha, McGregor `07
Ω(n1/(2p-1)): 

Bro-Miltersen, Nisan, Safra, Wigderson ’98
Ω(n1/p/p6)

Random Order Median Finding

Guha, McGregor `07
O(1) space, § pn logO(1) n approximation

) O(log log n) passes

Ω(n1/p/p6) ) polylog space implies Ω(log 
n) passes

Exponential separation!

Upper Bound 

Apologies: Its not difficult.

Sometimes there is only one way of 
looking at a problem, which makes it 
obvious in retrospect.

Those are the algorithms from the “book”.

The overall algorithm

1. Divide the stream into t=O(log n) pieces 
S1,E1,S2,E2,…,St,Et

2. Maintain feasible interval [x,y] containing the 
median.

3. Repeatedly

1. Pick a point z from Si
2. Estimate its rank wrt the overall stream
3. Update, i.e., Rank(z) ¸ n/2 + c logO(1) n pn then x+
4. Likewise y; otherwise z is the answer

Analysis

|Ei| = Ω(n/log n)
Estimate rank(z) to \pm p(n log n)

Why
Chernoff Hoeffding Bounds

Xi 2 {0,1}
S=∑i Xi

Pr[ S – E[S]>Nt] · exp( -2Nt2)
“Random walk” deviation

Approximate Binary Seach

The decision has a certain “error”
O(log n) levels, the error adds up, but by 
another log factor

(pn) logO(1) n

“Statisticians have done this before”

Sample Complexity, yes.
Space bounds, unlikely.
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Lower Bounds

Recall Indexing 
Alice has σ 2 {0,1}n

Bob has j

Need σ[j]

Must  send Ω(n) bits 

A reduction of median to Indexing

Alice creates/adds to the stream
2i+σ[i]
Starts running the median finding alg.
Sends the state of memory to Bob

Bob adds
n-j copies of (-1)’s
J-1 copies of (2n+2)’s

Median is ?

Approximate medians to Indexing

n=1/ε
Ω(1/ε) bound

How to extend to multiple passes?

Round Elimination Lemma 

Bro-Miltersen, Nisan, Safra, Wigderson ’98
Number of bits in a round: S

f is any communication problem
Define Pf

Alice has x1,x2,…,xm
Bob has j,y
Need f(xj,y)

A k round S bit protocol for Pf implies a (k-1) 
round  2S bit protocol for f

N1/p/2p lower bound for p-round protocols

Multipass ) Multiround

Alice dumps data to first part 
Bob dumps to second half

K passes 

A,B,A,B,…,…,…,…,A,B

K 2k-1 Rounds

Consequence

R() is a mapping for f
Alice creases R(x1),R(x2),…,R(xm) 
Bob creases R(y) & the selector

Median:
(n-j) |R| copies -1
(j-1) |R| copies +1
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Gap in Exponent

1/k versus 1/(2k-1) 
In sublinear space algorithms the 
holy grail is the exponent!

Two roads …

Road 1: Multiplayer Communication 
Complexity

Pointer Chasing, 
Nisan, Wigderson ‘93

K+1 players
Works when players have “similar”
category of input – good for permutation 
invariant function

(Median qualifies)  
N1/k/kO(1) bound for k passes

Road 2: Pass Elimination Lemma

Guha, McGregor ‘xx

1. CC ) Stream will always have a blowup in 
factor 2 in passes ) rounds 

2. Interaction
Alice has x1,x2,…,xm

Bob has y
Interaction between xi,xj for ordered problems

Prove something directly on streams.

Pass Elimination

Define Pf for any streaming function f
You are given x1,x2,…,xm,i
Compute f(xi)

This is not a communication problem – 2 rounds!

S space k pass algorithm for Pf gives a 2S space 
k-1 pass algorithm for f

Note: 
Reduction has to be a streaming algorithm
Simpler than CC proofs! There is no Bob.

Go forth & prove your lower bounds …

N1/k/2k lower bounds for a variety of
problems

Also gives a Direct-sum type 
byproduct: 

suppose we wish to solve all f(xi).
Space S alg. ) space S/m alg. for f()

That’s all folks


