Algorithms & The Order of the Stream

S. Guha UPENN

joint work with A. McGregor

Data Stream Model

- Adversary controls the order of the input.
 - Upper bound statements are very powerful
 - Few things have nice upper bounds response of boring to paranoia from non-theorists

Random Order Model

- o Worst case over the distribution
- Assumes that once the input is fixed, any permutation is equally likely.
- o Average case model
- Random order generalizes assumptions such as Zipf, Gaussian, etc

Why 1. A Classic Model

- o Munro, Paterson `80
 - Exact Algorithms
 - O(n^{1/p}) space using p passes
 - O(n^{1/(2p)}) space for random order streams
 - Open Problem: O(log log n) passes using log^{O(1)} n space.

- Limited Adversaries ...
- Say for a network the sum of the queue sizes ...

Upper Bound

o Apologies: Its not difficult.

- Sometimes there is only one way of looking at a problem, which makes it obvious in retrospect.
 - Those are the algorithms from the "book".

Gap in Exponent

1/k versus 1/(2k-1)
In sublinear space algorithms the holy grail is the exponent!

o Two roads ...

Road 1: Multiplayer Communication Complexity Pointer Chasing, Nisan, Wigderson '93 K+1 players Works when players have "similar" category of input – good for permutation invariant function (Median qualifies) N^{1/k}/k^{O(1)} bound for k passes

