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o Adversary controls the order of the
input.

Upper bound statements are very
powerful

Few things have nice upper bounds —
response of boring to paranoia from
non-theorists

Random Order Model

o Worst case over the distribution

o Assumes that once the input is fixed, any
permutation is equally likely.

o Average case model

o Random order generalizes assumptions
such as Zipf, Gaussian, etc

Why 1. A Classic Model

o Munro, Paterson ~80
Exact Algorithms
O(n*P) space using p passes

0O(nY@m) space for random order
streams

Open Problem: O(log log n) passes
using log®® n space.

Why 2. Power of Adversary

o Genie in the network hates you.

o All packets are delivered at exactly
the wrong point of time

o Adversary rearranges after looking
at the full input

o Limited Adversaries ...

o Say for a network the sum of the
queue sizes ...

Why 3. Natural Model

o Random by

Definition: iid samples from a
distribution. More on this later.

Semantics: (Firstname, Salary)

Design: Backup samples in disc.




Why 4. Algorithm Development

o Discrepancy Method
o Assume random order
o Develop algorithm

o Simulate random order

Meyerson '01 (showed both)
o used in Charikar, Panigrahy, O’callaghan ‘03)

Chang, Kannan '06; Guha, McGregor '07

Guha, McGregor, Venkatasubramanian '06; Bhuvnagari,
Ganguly '06, Chakrabarti, Cormode, McGregor '07.

Few Results

o Demaine, Lopez-Oritz, Munro, 02

o Takers?

o Has to be a permutation invariant
function.

3a) Brave New World

o Assume you are trying to estimate
some property of a distribution

Why did you want the median anyway?

o You need a bunch of samples (VC
Theory)

o Do you need to store all?

Space as Precision

o Find the CDF=%2 point.

o g2 samples give § ¢ guarantee
o Space S) 8 n/S we get 28 1/S

o Does not improve if n!'1
o Sad.

Looking Ahead

o Consistent Estimation
o Also Exchangeability and deFinetti

o If space S gave § (pn) log°® n/S
oAsn!l then§term!O0

Adversarial Order Upper Bounds

o Munro Paterson
n/? space for p passes exact

o Manku, Rajagopalan, Lindsay ~98
ellogZnfor§en

o MRL 99, Greenwald & Khanna ~01
ellogn

o 1/¢ points define a coreset in 1D
With a log n loss ...

o Sampling e2lognfor §en

o Consequence
&P for § £ n in p passes




Lower Bounds

o Munro, Paterson ‘80:
Deterministic algorithms storing pts, Q(n'/?P) space

o Henzinger, Raghavan, Rajagopalan ‘96
§ ¢ n, Q(1/¢) space
Communication Complexity

Multipass lower bound for other problems, not
median

o Guha, McGregor ~07
Q(nV/p-D):
o Bro-Miltersen, Nisan, Safra, Wigderson ‘98
on'?/p%)

Random Order Median Finding

o Guha, McGregor ~07
O(1) space, § pn log°® n approximation
) O(log log n) passes

o Q(n'P/p®) ) polylog space implies Q(log
n) passes

o Exponential separation!

Upper Bound

o Apologies: Its not difficult.

o Sometimes there is only one way of
looking at a problem, which makes it
obvious in retrospect.

Those are the algorithms from the “book”.

The overall algorithm

1. Divide the stream into t=0(log n) pieces
S1.E1.Sy B Si.E;

2. Maintain feasible interval [x,y] containing the
median.

3. Repeatedly

Pick a point z from S;

Estimate its rank wrt the overall stream

Update, i.e., Rank(z) , n/2 + ¢ log°® n pn then x+
Likewise y; otherwise z is the answer

Analysis

o |El = Q(n/log n)
o Estimate rank(z) to \pm p(n log n)
Why
Chernoff Hoeffding Bounds
oX; 2 {0,1}
0 S=%; X;
o Pr[ S — E[S]>Nt] - exp( -2Nt?)
o “Random walk” deviation

Approximate Binary Seach

o The decision has a certain “error”

o O(log n) levels, the error adds up, but by
another log factor

o (pn) log®® n
o “Statisticians have done this before”

o Sample Complexity, yes.
o Space bounds, unlikely.




Lower Bounds

A reduction of median to Indexing

o Recall Indexing
Alice has ¢ 2 {0,1}"
Bob has j

Need o[j]

o Must send Q(n) bits

o Alice creates/adds to the stream
2i+o][i]
Starts running the median finding alg.
Sends the state of memory to Bob

o Bob adds
n-j copies of (-1)'s
J-1 copies of (2n+2)’s

o Median is ?

Approximate medians to Indexing

Round Elimination Lemma

o n=1/g
o Q(1/¢) bound

o How to extend to multiple passes?

o Bro-Miltersen, Nisan, Safra, Wigderson 98
o Number of bits in a round: S

o fis any communication problem
o Define P;

Alice has X;,X5,....X,

Bob has j,y

Need f(x;,y)

o Ak round S bit protocol for P; implies a (k-1)
round 2S bit protocol for f

o N¥p/2p Jower bound for p-round protocols

Multipass ) Multiround

Consequence

o Alice dumps data to first part
o Bob dumps to second half

o K passes
—
oABAB,. ..,.,.....,AB
\_ v
e

K 2k-1 Rounds

o R() is a mapping for f
o Alice creases R(x,),R(X,),....R(X.,)
o Bob creases R(y) & the selector

o Median:
(n-j) |R] copies -1
(-1) |R]| copies +1




Gap in Exponent

Road 1: Multiplayer Communication
Complexity

o 1/k versus 1/(2k-1)

o In sublinear space algorithms the
holy grail is the exponent!

o Two roads ...

o Pointer Chasing,
Nisan, Wigderson ‘93
o K+1 players
o Works when players have “similar”
category of input — good for permutation
invariant function

o (Median qualifies)
o Nk/kO®M pound for k passes

Road 2: Pass Elimination Lemma

Pass Elimination

o Guha, McGregor ‘xx

1. CC) Stream will always have a blowup in
factor 2 in passes ) rounds
2. Interaction
Alice has X1,X5,....Xm
Bob has y
Interaction between x;,x; for ordered problems

o Prove something directly on streams.

o Define P; for any streaming function f
You are given X;,Xp,...,Xm,l
Compute f(x;)

o This is not a communication problem — 2 rounds!

o S space k pass algorithm for P; gives a 2S space
k-1 pass algorithm for f

o Note:
Reduction has to be a streaming algorithm
Simpler than CC proofs! There is no Bob.

Go forth & prove your lower bounds ...

o N¥/k/2k Jower bounds for a variety of
problems

o Also gives a Direct-sum type
byproduct:
suppose we wish to solve all f(x;).
Space S alg. ) space S/m alg. for f()

That's all folks
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